期刊家
学术期刊
科普期刊
出版社
图书
会议
我的购物车 0

基于学习排序的多分类标签排序方法研究

作者:贺成诚,汪海涛,姜瑛,陈星 | 学习排序广义线性模型最大似然估计

摘要:学习排序是利用机器学习技术来对搜索结果进行排序的技术。它在包括信息检索与数据挖掘等技术在内的众多应用领域中具有重大作用,因此近年来备受关注。学习排序通常假设每个培训实例都与一个可靠的标签相关联产生列表,但并不假定此列表是完整的或一致的。通过结合广义线性模型和Plackett-Luce(P-L)模型,提出一种基于实例的解决多分类标签的排序方法。目标是训练学习一种排序功能,排序功能通过训练提出一种最大似然估计方法。该方法估计标签排序,并迭代地训练排序功能,该功能可以在整套标签上产生全部排序。先利用广义线性模型对标签进行分类,再用P-L模型对各类别的标签进行排序,最后利用最大似然估计的方法对框架模型进行优化处理。该方法在不完整的训练数据的情况下,较其他模型方法在准确性上提升5%。

注:因版权方要求,不能公开全文,如需全文,请咨询杂志社

计算机应用与软件

《计算机应用与软件》(CN:31-1260/TP)是一本有较高学术价值的大型月刊,自创刊以来,选题新奇而不失报道广度,服务大众而不失理论高度。颇受业界和广大读者的关注和好评。

《计算机应用与软件》主要面向从事计算机应用和软件技术开发的科研人员、工程技术人员、各大专院校师生等。致力于创办以创新、准确、实用为特色,突出综述性、科学性、实用性,及时报道国内外计算机技术在科研、教学、应用方面的研究成果和发展动态的综合性技术期刊,为国内计算机同行提供学术交流的平台。

期刊详情
  • 免费
    咨询
  • 订阅咨询
  • 期刊推荐
  • 联系电话
    发表咨询:023-6549-4411
    订阅咨询:023-6033-8768